RESEARCH IN PHYSIOPATHOLOGY AS BASIS OF GUIDED CHEMOTHERAPY

With Special Application to Cancer

EMANUEL REVICI, M.D.

Scientific Director, Institute of Applied Biology, New York, N. Y. Chief of Dept. of Oncology, Trafalgar Hospital, New York, N. Y.

Published for the American Foundation for Cancer Research, Inc., by

D. VAN NOSTRAND COMPANY, INC.

PRINCETON, NEW JERSEY

TORONTO

NEW YORK

LONDON

D. VAN NOSTRAND COMPANY, INC. 120 Alexander St., Princeton, New Jersey (*Principal office*) 24 West 40 Street, New York 18, New York

Medical Callery

F't. 115 p. A

D. VAN NOSTRAND COMPANY, LTD. 358, Kensington High Street, London, W.14, England

D. VAN NOSTRAND COMPANY (Canada), LTD. 25 Hollinger Road, Toronto 16, Canada

Copyright © 1961, by EMANUEL REVICI, M.D.

Published simultaneously in Canada by D. VAN NOSTRAND COMPANY (Canada), LTD.

No seconduction to man deans - + + + + +

CONTENTS

96.271.21

Foreword	xix
THEORY AND FACTS The Present State of the Cancer Problem	xix xxii
1. Basic Concepts of Organization	1
Homotropy and Heterotropy in Nature The Atom Homotropic and Heterotropic Forces in the Atom Fulfillment of Quantum and Electrostatic Forces Quantum and Electrostatic Forces in Molecules Binding of Molecules Polymolecular Formations Micelles Organization of Motion as Heterotropic Achievement Levels, Entities and Constituent Parts Principal and Secondary Parts The Organized Boundary	2 3 4 5 6 9 9 9 10 11 12 13 16
2. Biological Entities	17
Biological Realm Nucleolus Protoplasmatic Formations Boundary Formations Hierarchic Interrelationship Phylogenetic Development Constants Water Circulation Animals and Plants Multiplication	20 23 23 23 24 24 24 28 30 30 31 v
and Grand and The second Court and the second of the second second second second second second second second se	

vi	/	С	0	N	T	E	N	Т	S
	/	_				_	-	_	_

Life and Death	32
Maintenance of Constants	33
Dualism	35
Normal and Abnormal	36
3. Cancer as an Organized Condition	38
Precancerous Phase	39
Noninvasive Phase	39
Invasive Phase	40
Painful Phase	40
Preterminal and Terminal Phases	40
4. Dualism	43
Pain	43
Dualism in Pain	43
Physiological and Pathological Pain	43
Dualism in Pathological Pain	45
Pain and Acid-Base Balance Changes	46
Acidifying and Alkalizing Agents	52
Dualism in Local pH Measurements	55
Oxido-reduction Potential	59
Abnormal Substances	60
OTHER ACID AND ALKALINE SYMPTOMS	61
Itching	61
Vertigo	67
Impaired Hearing Mania depressive Condition	73
Dusping	[] []
Dyspheu Dualistic Patterns at Other Levels	82
Cellular Level	82
Tissular Level	83
Organic Level	83
Systemic Level	83
Temperature	83
Systemic Analyses	85
Blood	86
Urine Listen Dette	86
Urinary Patterns	90
Place of Dualism in Cancer Physionethology	93
Trace of Dualishi in Cancer Physiopathology	33
5. The Constituents	104
The Elements	105
The Series	105
Periods	107

٠

CONTEN	TS / vii
6. Lipids and Lipoids	113
DEFINITION OF LIPIDS	114
Physical Linoidic Properties	110
Solubility	119
Molecular Layer Formation	123
Chemical Properties	124
Biological Properties	125
Lipidic System	125
FATTY ACIDS	128
Rancidity	128
Caloric Metabolism	129
Constitutional Role	130
Functional Role	130
Abnormal Fatty Acids	131
Methods of Investigation Used	132
THE ANTLEATTY ACIDS	125
Glucerol and Glucerophosphoria Acid	135
Steroids	135
Sex Hormones	139
Sterols	141
Steroids with a Two-Carbon Chain	143
The Luteoids	143
Corticoids	144
Glucuronic and Sulfuric Anions	147
FATTY ACIDS VS ANTI-FATTY ACIDS	148
Sex	149
Age	150
Other Physiological Factors	150
Effects of Lipids on Viruses	154
Effects of Lipids on Microbes	157
Effects of Lipids on Protozoa	158
Effects of Lipids on Complex Organisms	159
On Pain	160
Wound Healing	161
Regeneration	161
Organic Level	162
Kidnev	162
Nervous System	163
Convulsions	163
Coma	163

1.1

An and a second second

- -

viii / CONT	TENTS
-------------	--------------

On Cardiac Rhythm	164
On Oestral Cycles	164
Systemic Level	164
On Temperature	164
On Systemic Patterns	165
Mechanism of the Lipidic Biological Activity	165
Other Constituents	168
Aminoacids	168
Carbohydrates	170
7. Defense	171
Diphasic Phenomenon	172
Prolonged Hemoshock	176
Anti-heterogenous Reaction	177
Coagulant Antibodies	179
Allergic Reaction	180
Lipido-Proteic Antibodies	181
Neutralizing Antibodies	182
Defense and Hierarchic Levels	183
Clinical Manifestations	184
Organization and Defense	186
Amnity of Antigens	189
Allergic Precipitates	193
Intermediary Lysates	194
INFECTIOUS DISEASES	195
Toxic and Allergic Conditions	195
Pneumococcic Pneumonia	198
Diphtheria	199
Typhold	201
l etanus Debies	202
Kables Symbilic and Tubacoulosis	202
Syphilis and Tuberculosis Streptococcol Infactions	203
Sheptococcar infections	204
Immunological Defense Against Cells and Tissues	206
Heterogenization of the transplants	206
7th day Manifestations in Trauma	210
IMMUNOLOGICAL PROBLEMS IN CANCER	212
Grafts in Humans	214
Metastases	217
Immunological Therapeutic Approach	218

CONTENTS	/ ix
8. The Correlation Between the Basic Concepts	221
Hierarchic Organization Constituents Dualism	221 222 223
9. Shock	225
Types of Shock Shock Mechanism Pathological Changes Fatty Acids and NaCl in Shock Water Metabolism Other Changes Experimentally Induced Shock	225 227 227 229 232 233 233
10. Radiation	236
Irradiation of Lipids Irradiation in Vitro Irradiation in Vivo Local Effects Lipids and Radiation Burns Role of Anti-Fatty Acids Role of Adrenals Direct Action of Radiation Radiotherapy Biologically Guided Radiotherapy	236 238 242 249 252 256 257 258 261 262
11. Problems in Cancer	264
Diagnostic Tests Circulating Cancer Cells and Surgery	265 267
EXPERIMENTAL CARCINOGENESIS Energetic Factors Twin Formation Nitrogen Mustard Derivatives Epoxide Carcinogens Synjugated Formations	268 270 271 278 281 283 290
Two Types of Carcinogenic Effects Plural Activity Virus and the Host Virus and Lipoids	290 293 295 296

Service Constants (Generally) UNIVERSITY OF MICHIGAN Digitized by GOOgle

x / CONTENTS

GENETICS AND CARCINOGENESIS	302
Allotropic Resonance Forms	302
Lipids and Carcinogenesis	304
Carcinogenic Activity of Urethane	307
INTERVENTION OF PSYCHOLOGICAL FACTORS IN CANCER PATHO- GENESIS	308
12. Pharmacodynamic Activity	311
AGENTS WITH ACTIVE NEGATIVE POLAR GROUPS	312
Fatty Acids	312
Saturated Fatty Acids	312
Unsaturated Fatty Acids	313
Acid Lipidic Fractions	317
Abnormal Fatty Acids	319
Bixine	324
Fading Response	325
Alpha Hydroxy Fatty Acids	326
Other Fatty Acids	326
Peroxide Fatty Acids	327
Halogenic Compounds of Fatty Acids	328
LIPOIDS WITH OTHER NEGATIVE POLAR GROUPS	320
Lipoaldehydes	329
Linoids with Thiol Groups	330
Mercaptans	330
Hydropersulfides	334
Other Compounds with a Thiol Group	335
Tetrahydronaphthalene Persulfides	336
Thiosulfates	336
Alpha-Thio-Fatty Acids	338
Thioglycolic Series	338
Relationship to Sulfur Metabolism	340
Selenium Lipoids	342
Hexyl- and Heptydiselenides	343
Tetrahydronaphthalene Perselenide	344
ALKYLATING AGENTS	345
Sulfur Mustard	346
Epichlorohydrin	348
	0.10
The Elements	349
Magnesium	354
Calcium	356
Copper	358
Manganese and Cobalt	360

сс	ONTENTS / xi	
Heavier Elements	361	
Elements in the Pathogenesis of Cancer	301	
13. Pharmacodynamic Activity (Part Ty	wo) 362	
ANTI-FATTY ACID GROUP	362	
Anti-Fatty Acids Constituents	362	
Glycerol	363	
Glucose	368	
Glycerophosphoric Acid	368	
Sterols	369	
Insaponifiable Fractions	371	
Corticoids	372	
Synthetic Anti-Fatty Acids	375	
Butanol	375	
Higher Alcohols	380	
Polyols	387	
Diols	387	
Lipoalcohols with Energetic Centers in the Nong	bolar Group 388	
Other Alconois	389	
Lipamines	390	
The Elements	391	
I he Elements Monovalent Cations	394	
Sodium	393	
Potassium	395	
Iron	300	
Zinc	401	
Mercury	402	
Bismuth	402	
Arsenic	402	
Aluminum	403	
Chlorine	403	
Fluorine and Bromine	404	
Iodine	404	
Oxygen	405	
Peroxidases	409	
Antioxidants	409	
14 Therementic Americal	412	
14. Inerapeutic Approach	413	
BIOLOGICAL GUIDED THERAPY	413	
Criteria	415	
The Agents	416	
Method of Application	416	
Evaluation	417	
	- 10 A. S. Barrow	

xii / CONTENTS

THERAPEUTIC APPLICATIONS IN CONDITIONS OTHER THAN CANCER	418
Acid Base Manifestation	420
Pain	421
Trauma	423
Burns	426
Vertigo	428
Hearing Impairment	430
Itching	435
Gallbladder and Renal Colic	435
Arthritis	435
Connective Tissue Condition	437
Hemorrhage	439
Hemorrhagiparous Agents	439
Antihemorrhagic Agents	441
Butanol	441
Fatty Acids	450
Allergic Conditions	451
Arteriosclerosis	452
Therapeutic Attempts	457
15. Therapeutic Approach to Cancer	461
Placenta Extracts	463
Cod Liver Oil Fatty Acids and Sterols	466
Acid Lipidic Fractions and Unsaponifiable	468
Group of Agents	473
Mercaptans	476
Sulfurized Oil	481
Thiosulfates	482
Hydronaphthalene Persulfides	491
Butanol, Glycerol	493
Conjugated Fatty Acids	501
Heterogeneous Agents	508
Selenium Preparations	512
Tetralin Perselenide	518
Radiation and Chemotherapy	524
16. Present Form of Treatment	531
Conduct of Treatment	532
Conduct of Treatment	536
Results Obtained	537
Bibliography	727
INDEX	/4/

and the second second second second second

NOTES

Digitized by Google

Chapter 1	
1. Subnuclear Organization	543
Chapter 2	
 NOTE 1. CNCN 2. Repartition of Potassium and Sodium 3. Social Hierarchic Organization 	545 547 548
Chapter 3	
NOTE 1. Precancerous Lesions 2. Noninvasive Cancer 3. Abnormal Amino Acids	550 550 551
Chapter 4	
 Physiological and Pathological Pain Blood Titrimetric Alkalinity and Urinary pH Acid Pattern of Pain and Lactic Acid Itching Nasal pH Wheal Resorption Eosinophiles Total Blood Potassium Sulfhydryl Determination Calcium in Urine Urinary Surface Tension <i>Technical Problems Design and Calibration of the Urotensiometer</i> 	552 557 561 562 565 566 567 571 573 575 575 575 575
	xiii

Original from UNIVERSITY OF MICHIGAN xiv / NOTES

NOT	E
	The Measurement of Urinary Surface Tension with the Uro- tensiometer
	The Nature of the Intervening Substances
	Surface Tension and Normal and Abnormal Physiology
	Time of the Day and Urinary Surface Tension
	Surface Tension in Normal Humans and Animals
	Colloids in Urine and Surface Tension
12.	Urinary Oxydoreduction Potential
13.	Oxydoreduction Potential of the Urine
14.	Peroxides in the Urine
15	Index of Excretion and Retention

595

15. Index of Excretion and Retention 16. Water and Nitrogen Metabolisms

10.	water	and	Nitrogen	Metabolisms	

Chapter 5

NOTE	
1. Second Day Wound Crust pH	597
CHEMICAL FACTORS	599
Cations and Anions	599
Acid Lipoids	601
Alcohols	601
Other Agents	603
Physical Agents	607
BIOLOGICAL FACTORS	608
2. Potassium	610
Potassium and Offbalances	612
Potassium and Lipids	613
Potassium and Therapy	615

Chapter 6

615 615 616 616
615 615 616 616
615 616 616
616 616
616
618
619
621
622
626
627
622
627
631
631
633
633

main francisco sen file est i se

N	0	T	E	S	/	xv

NOT	TE	
14.	Energetic Center in Steroids	635
15.	Relationship Between Corticoids	637
16.	The Template Hypothesis	636
17.	Adrenal Defense Index	638
19.	Bonds of Glucuronic Acid	641
20.	Glucuronic Acid—Mechanism of Coupling	641
21.	Paraplegia Induced by Cholesterol	644
22.	Adipose Cells and Sulfur Mustard	645
23.	Fatty Acids and Old Tetrahymena	646
24.	Lipids and Old Age	646
25.	Surface Tension of Urine in Old Age	646
26.	Environmental Influences	649
27.	Environmental Influences Upon Urinary Surface Tension	651
28.	Barometric Influence	653
29.	Lipoids and Tumor Transplants	653
30.	Temperature, Lipids and Virus Infection	654
31.	Youth and Viruses	654
32.	Changes in the Viruses Induced by Lipids	655
33.	Microbes, Phages and Lipids	656
34.	Lipids and Survival Time of Tetrahymena	656
35.	Lipids, Temperature and Tetrahymena	657
36.	Pain Induced by Lipids	657
37.	Lipids and Wound Healing	657
38.	Liver Regeneration	658
39.	Lipids and Convulsions	659
40.	Lipoids and Coma	659
41.	Cardiac Rhythm	660
42.	Some General Considerations of the Role of Lipids in Blood	
	Physiology	662
	Sedimentation Rate	663
	Red Cell Volume	664
	Red Cells, Plasma and Lipids	664
	Lipids and Oxygen Transport	667
	Lipids and Shock	667
	Effects upon Leucocytes	668
	Lipids and Blood Serum Cholesterol	668

Chapter 7

NOTE	
1. Analyses in Studying the Hemoshock	669
2. Morphine and Shock	670
3. Physical Exercise and Shock	671
4. Lymphocytes and Effects in Vitro	671
5. Lipids and Immunity	671
6. Microbes Treated with Lipids	671
7. Skin Allergy	673

xvi / NOTES

NOTE

Chapter 9

NOTE	
1. Hemoglobinuria a Frigore	673
2. Lipids and Rouleaux and Sludge Formation	678
3. Dark Color of the Blood in Shock	678
4. Induction of Acute Shock	679
5. Induction of State of Shock	679
6. Influence of Fatty Acids upon Traumatic Shock	679
7. Influence of Unsaponifiable Fractions upon Traumatic Shock	680

Chapter 10

NOTE	
1. Oxalic Index	680
2. Irradiation and Oxalic Index	682
3. Oxalic Index in Sublethal Irradiation	682
4. Radiation Induced Offbalances	683

Chapter 11

NOTE	
1. Carcinogenic Activity of Urethane	689
2. Constitution of Viruses	690

Chapter 12

	L	
NOT	TE	
1.	Lipids and Cytolytic Activity of Sera	691
2.	Fatty Acids Transportation in the Blood	694
3.	Conjugation Method	695
4.	Quenching Action and Anti-Carcinogenic Effect of Conjugated	
	Fatty Acids	695
	Conjugated Fatty Acids and Quenching	699
	Conjugated Fatty Acids and Induced Carcinogenesis	703
5.	Lipids and Tumor Chlorides	710
6.	α-OH Fatty Acid and Experimental Tumors	710
7.	Hydropersulfides	711
9.	Magnesium and Adrenalectomy	712

Chapter 13

1.	Glycerol and Chills	713
2.	Influence of Glycerol upon the Cardiac Rhythm	714
3.	Glycerol Induced Convulsions	714
4.	Suspensions of Lipoids	715
5.	Cholesterol Induced Convulsions	715
6.	Treatments in Successive Generations	715
7.	Conjugated Trienic Alcohols	718

NOTE	
8. Toxicity of Butanol in Humans	718
9. Butanol and Leucocytes	719
10. Butanol-sodium lactate in Burns	720
11. Effect of Heptanol	721

NOTES / XVII

Chapter 14

NOTE	
1. Observations of Dr. E. Stoopen	721
2. Dr. Welt's Publication on Butanol	723
3. Dr. A. Ravich's Conclusions	723
4. Treatment of Post-Traumatic Conditions	723
5. Dr. B. Welt's Conclusions on Hearing	724
6. Butanol in Plastic Surgery	725

Chapter 15

NOT	E		
1.	Radiation and	I Chemotherapy	726

To My Wife

FOREWORD

THEORY AND FACTS

Ew OTHER PATHOLOGICAL CONDITIONS have aroused, as cancer has, the interest of so many scientific disciplines. Problems related to cancer have become of continuously increasing concern in virtually every field of medicine. In some, such as pathology, they are a major preoccupation. But in sciences other than medicine, cancer also has been receiving increased attention. One of the most urgent activities of synthetic chemistry today is the search for new compounds which might possibly be effective in the control of cancer. Physical chemistry is trying to provide new explanations about the variety of processes present in cancer. Even mathematical studies which recently have offered an interesting application of quantum theory to carcinogenesis, have found new applications in cancer.

With the rapid development of physical sciences, the medical research worker has hoped that from them might come some contribution that could help him ultimately in his difficult task. He also appears to have been anxious to take quick advantage of the progress of other disciplines for another reason, hoping that, through employing their findings and methodology, medicine in general and cancer research in particular, could be promptly changed from the empirical discipline it has been until now into a positive science. He has brought as many applications of other disciplines as possible into his study and this has led to a whole series of new methods of investigation through which interesting new information has been obtained. Yet, most of these applications have been tried chiefly because they have been at the immediate disposal of the scientist rather than because they have represented a missing link in the development of his own ideas.

The outcome has not been rewarding. Medical knowledge appears not to be sufficiently advanced to successfully utilize the avalanche of new, highly specialized information offered by the investigative methods derived

xix

XX / FOREWORD

from other disciplines. Basic theoretical knowledge in medicine in general, and about cancer in particular, has not yet reached the level necessary to relate and assimilate the new data. To a large extent, basic concepts about pathogenic problems are not even formulated as yet. When the medical scientist has tried to transform the new data into effective therapeutic procedures, he has failed. And the failure has made more evident how much we need basic physiopathological knowledge before we are able to take advantage of detailed data.

Meanwhile, normal development of cancer research has been hindered, side-tracked from its logical course. While thousands of scientists with almost unlimited funds at their disposal are presently using the most advanced methods for the acquisition of details, almost no attempts are being made to resolve basic problems, although the cancer investigator is continuously obliged to realize the dearth of fundamental knowledge.

If we attempt to analyze this abnormal situation further, we can find indications that it may have its origin also in a distortion of the proper relationship between the two factors that, together, make for progress in research—ideas and experiment.

The experimental approach provides precise information about particular phenomena under defined conditions. The analytical method tries to investigate reality by recognizing the proper place of the various constituents of a whole, the parts being identified as such by the experimental findings. On the other hand, the conceptual method not only provides an inkling of what the completed whole will eventually look like, but also attempts to predict the properties and the relationship of the component parts.

In dealing with a highly refined and complicated subject, the analytical method by itself appears inadequate. For example, in atomic physics, the results of experiments are expressed by numbers giving the values of certain physical quantities that have been measured. In order to complete the analysis, we must simultaneously determine the numerical values of certain quantities defining the material bodies, the objects of the experiments. This is prohibitive so far as canonical coordinates by Heisenberg's uncertainty principles are concerned. With experimental knowledge somewhat curtailed, theory at present must attempt explanation.

In other areas as well, experiments present only limited numerical values pertaining to some physical quantities. Were we able to measure all quantities, we could analytically reconstruct the entire theme of the physical reality. However, when some quantities cannot be simultaneously determined, this direct reconstruction is not possible and experiments merely give an indirect approach to what we regard as "reality."

If the inadequacy of the analytical approach by itself is evident in the highly positive disciplines, such as in the physical sciences, it is even more so in biology. As Bohr and others have intimated, the conditions of uncertainty seem to be much more pronounced in biology than in physical science. The fact that experiments in biology give only fragmentary and unrelated results is not surprising; the need for a synthetic theoretical method in this field is clear.

In medicine, which is applied biology, the need for the conceptual approach is especially profound. It is true that this approach, as the sole approach, has shown its inherent weakness in the past. There was a time in the development of medicine when available data were so scarce and unreliable, and the need for ideas to provide some sort of guidance was so great, that the worker resorted to broad imagination, using it to replace almost entirely any other form of investigation.

Largely as a reaction to the high proportion of "speculations" prevalent in the early years, the experimental approach in medicine came to be emphasized. Claude Bernard, who almost single-handedly was responsible for this, tried to give experimentation its rightful role. However, in ensuing decades, the relationship between theory and experimentation has been progressively distorted. An unrestrained exaggeration of the role of the experiment, the erroneous view that pure facts represent the aim of research, has led to an entirely unbalanced approach. Not only have almost any data obtained by research been considered intrinsically interesting, but obtaining them has become the sole purpose of much research. In scientific papers today, experimental data must be reported as such; any allusion to theoretical meaning is considered undesirable. Generations of scientists have been schooled to believe in the intrinsic value of the experiment. As they have applied this belief to research in biology, and as they have made unlimited use of new methods taken from other disciplines with no ideological requirement for their use, we have had more and more data and fewer ideas. Today, with great astonishment, some scientists are at last beginning to recognize not only that data alone do not generate ideas, but that science cannot progress without theory.

Ideas and experiments are integral parts of all scientific research. A balance between them is needed to assure progress. It must be understood that the function of experimentation is to guide our thinking, to help build up new concepts, and to prove their accuracy in accordance with reality. Certainly, fundamental concepts must not be mere "speculations." They

xxii / FOREWORD

should be accepted only after confirmation through experimentation. Experimentation is the necessary link between mental concept and reality. To the attempts to consider any unresolved fundamental problems in biology, one has to try to bring a rightful balance between conceptual views and experimentation.

The exaggerated importance attributed to experimentation in biological science, its use even as a substitute for ideas, has led recently to a massive attempt to solve the therapeutic problem of cancer by indiscriminate screening of chemical agents. Here, empiricism has been brought to its culmination. After tests of tens of thousands of agents, many workers are now beginning to realize that the results are almost worthless for cancer cherapy in humans, that seemingly promising agents have an effectiveness limited to the conditions present in the actual animal experiments. By its impressive magnitude, the failure of indiscriminate screening, of empiricism epitomized, has begun to impel many workers to change their idea as to what must be done if the cancer problem is to be solved. A first result of this change has been a new and, this time, unbiased evaluation of just where we stand in our assault on the cancer problem. Every day more scientists are making the evaluation in their reports to the medical profession and to the public with a candidness which, only a few years ago, very few would have employed.

The Present State of the Cancer Problem

Surgery in cancer can be considered to have arrived now at or near its maximum efficiency. Thanks to progress in operative techniques, and to advances in pre- and post-operative care, ultraradical surgery is available today. The propensity of cancer to spread far from its original site has made such surgery obligatory in many cases if there is to be an effort to eliminate all malignant cells. Yet ultraradical surgery has not sufficiently increased the cure rate to justify horrifying mutilations, especially when the face is involved. With few exceptions, surgical procedures do not prevent the patient from dying of cancer sooner or later. The so-called five-year-cure-rate represents, to say the least, an unrealistic appraisal. Many authors consider that even the rate of five-year survival is not improved by surgical procedures, and the ultimate fate of these five-year survivors, with few exceptions, is still disastrous. Most of the "cured" cases still die from cancer.

Other recently discovered facts have increased skepticism about the value of surgery in cancer. The polycentric origin of cancer, especially in

cases where the lesions are far apart—considered by some workers to be true even in malignant melanoma, for instance—would greatly limit the value of surgery as a means of climinating all cancerous cells. It is recognized that to operate on a lymphoma is useless. Furthermore, it is known today that cancer cells are present in the circulating blood. Surgical manipulation has been found to induce a flow of these cells into the blood even from relatively small primary tumors.

In view of all this, cancer cannot be considered to be a condition for which surgery is a major hope. Surgery represents only an expedient—to be tried so long as nothing better can be offered. It is probable that in the future it will be reserved, in cancer treatment, for the correction of mechanical complications, such as intestinal or other duct occlusion.

Unfortunately, radiation has not been much more successful in its long range results. In order to control cancer, it is necessary that radiation destroy all the cancer cells present in the organism while producing minimal damage to normal tissue. It appears that such high selectivity of action cannot be obtained. The lack of it may be implicit in the nature of the effects achieved by radiation. A study of the biological effects of radiation, which is to be presented later in this monograph, has shown that an important part of the action of radiation is to induce changes in certain constituents of the body, principally fatty acids. These changes are largely responsible for the favorable effects of radiation but they also are largely responsible for the undesired effects. It is the nature of these changes which limits qualitatively the capacity of radiation to influence cancerous processes, and makes it dubious that progress in technique can ever greatly improve the qualitatively insufficient effectiveness of radiation. Clinical results to date provide confirmation of this pessimistic view. The recent use of extremely high voltage radiation, of radioactive cobalt, and of other radioactive particles has not greatly improved results over those obtained with older forms of radiation twenty years ago, except for reducing some harmful immediate skin and systemic effects. Now, as earlier, with few exceptions, the benefits of radiation are no more than temporary. Long lasting good effects still are limited to only a few radio-sensitive tumors.

The resort to isotopes, in which the scientific world has put so much hope and millions of dollars, also has proved greatly disappointing. Of the thousands of cases of various kinds of cancer in which isotope therapy has been tried, only a very limited number of cancers of the thyroid have responded. Not only because of its continuing failures, but because of its inherent qualitative inadequacy, radiation does not appear, any more than surgery, to represent the solution for the problem of cancer.

xxiv / FOREWORD

With surgery and radiation therapy incapable of resolving the problem, more and more research workers have turned their efforts in other directions. The existence of some cases of spontaneous remission has led many investigators to believe that immunological procedures related to cancer would be able to resolve these problems. Unfortunately the existing knowledge in this specific field is too meager to permit more than some tentative investigations, usually only repetitions of similar researches made many years ago with limited success. Fruitful development of this approach would have to follow the normal pathway, starting with more knowledge of the complex immunological processes intervening in cancer.

An enormous amount of cancer research in recent years has been directed toward chemotherapy. It is a fact that many agents and groups of agents have shown the capacity to influence tumor evolution. However, each has had limited usefulness. Results of treatment have been characterized by inconsistency. Even in seemingly susceptible types of cancers, results have been good in one case, poor in another and have varied even for the same patient at different times. The inability to explain and remedy these variations has discouraged many workers. Although it appears evident that the source of discrepancies resides in the patients themselves, the general tendency among researchers has been to try to resolve the problem by finding agents able to act independently of any differences which exist between subjects.

In despair at the lack of progress in this approach, many workers today are using the screening enterprise mentioned above as a kind of last resort. For this project, they have renounced the scientific concept that pharmacodynamic activity must serve as the basis on which an agent is to be tried in therapy. They have fastened into a purely empiric approach. Now, all available chemical substances-and many others which will be synthesized especially for the purpose-are to be screened indiscriminately, for their effects on animal tumors with no reason for this test other than that the agents are, or can be made, available. We will not dwell here on the assumption that routine technique is more likely than imaginative brain power to resolve the problem of cancer. The results of this screening to date have shown it to be an invalid procedure, as expected by most critical workers. With tens of thousands of substances already tested, the busy screeners are obliged to recognize that the approach itself is fundamentally erroneous. Experience has proved that an agent can be wonderfully effective against one tumor and still be entirely inactive in others. Of tens of thousands of agents tested, less than a hundred have shown effects on

tumors in animals. None appears to have significant value when applied in humans.

These results have emphasized again the importance of factors other than the agent itself. One factor lies in the differences which exist between various tumors. Some of the other factors include variations between species, between individuals of the same species, between origins of tumors, between spontaneous and transplanted tumors, and even variations in any one individual at different times.

Faced with this situation, some workers have concluded that not one treatment but at least hundreds of different treatments must be found in order to cope with the huge variety of conditions.

Taking cognizance of these considerations, it has seemed to us that a more realistic and logical approach is to try to understand the nature of the existing differences and to attempt to make the treatment adequate on the basis of that understanding. It has been this approach which has been followed in our research.

We have studied the problem of cancer for the last thirty years from an entirely different vantage point than that used by other workers. Attention has been focused on the physiopathological aspect of cancer, on the basic changes that occur in the different patients, with the ultimate aim of understanding the part played by these changes in the response of cancer to therapeutic attempts. This emphasis on the physiopathological aspect of cancer has been made possible by applying a more general overall idea of the nature of the disease.

This approach is based under various new concepts. They concern,

- 1) The role of the organization in the pathogenesis of the conditions.
- 2) A dualistic systematization of the manifestations related to normal and abnormal physiology.
- 3) The predominant intervention of certain constituents such as lipoids and chemical elements in the induction of the opposite manifestations.
- 4) The possibility to integrate the occurring processes into a system of *defense mechanism* against the noxious influence exerted by the environment.

Many general and special problems of physiopathology, some of them concerning cancer and other conditions, have been analyzed in this framework.

The application of this approach to therapy has resulted from a logical development of that approach. The recognition of the intervention of a variety of pathogenic factors, not only differing from one subject to the other, but even changing in the same subject during the evolution of the

xxvi / FOREWORD

condition has emphasized the need for individualized therapy. As opposed to the tendency to overcome the differences existing between individual subjects through a standard therapy, the "guided therapy" utilizes the knowledge of the occurring different pathogenic particularities in order to correct them. A high degree of flexibility in the treatment has appeared necessary.

As part of this approach to therapy, has appeared the need for more complete knowledge of the existing differences and their interpretation in terms of the pathogenesis of the condition. The search for adequate analytical tests has thus represented the first task. The development of day-by-day analysis of the condition has been possible by choosing relatively simple but reliable procedures. The information they offered was used to determine the nature of the agents able to correct with a certain specificity, the encountered pathological conditions. These two parts, the recognition of the existing condition and the adequate agents, have concretized this approach.

These considerations explain also why the new developed "guided therapy" cannot be understood and correctly applied without a sufficient knowledge of its physiopathological and pharmacological basis. These same considerations have led us to present the research concerning this approach as a block, instead of fragmented communications. The form of a monograph has appeared consequently the best suited. In a further effort to achieve a cohesive presentation, we have separated from the text most of the technical and experimental data, and presented them as notes at the end of the text.

ACKNOWLEDGEMENT

Progress in our research has been made possible only through the day by day cooperation of different groups of co-workers who have contributed years of assiduous work. Many of them are mentioned in the following pages where the research in which they took part is presented. I am deeply indebted to them.

I wish to thank all those friends whose personal efforts or, who through their organizations, have given their material and moral support to the continuation of our research. Special thanks go to Mrs. Sherman Pratt for her tireless efforts on our behalf.

My sincere appreciation to those who have helped me in the preparation of this book, Mr. L. Galton, Mrs. E. F. Taskier and Mrs. H. Kennedy for the editorial work; Mrs. E. F. Taskier for the figures; and Mrs. P. Berger, Mrs. B. Doctors and Mrs. M. Prikasky for the secretarial work.

I wish to gratefully acknowledge Miss Fanny Holtzmann's devoted friendship and help.